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Abstract. We study the decay B± → φK∗±, followed by the decay of the outgoing vector mesons into two
pseudoscalars. The analysis of the angular distributions of the decay products is shown to provide useful
information about the annihilation contributions and possible tests of factorization.

1 Introduction

The analysis of B meson physics offers an attractive op-
portunity to get a deep insight into the flavor structure of
the standard model (SM) and the origin of CP -violation.
In view of the wide variety of decay channels, one can look
for many different observables, providing a stringent test
for the consistency of the model. However, the potential
power of the analysis is severely limited by our present
theoretical capability of dealing with strong interactions
in the intermediate and low energy regimes. In fact, only
a limited number of observables are free of theoretical un-
certainties within the SM. The main sources of theoretical
errors arise from the evaluation of weak transition ampli-
tudes (matrix elements of quark current–current operators
between hadron states) and from the estimation of final
state interaction (FSI) effects. Thus, the theoretical con-
trol of these uncertainties turns out to be a crucial goal.

For non-leptonic B meson decays, the usual procedure
to calculate the weak transition amplitudes is based on
the effective Hamiltonian approach and the use of a Wil-
son operator product expansion. The Wilson coefficients
contain the information from short-distance physics and
can be computed perturbatively. This program has been
fully carried out already up to next-to-leading order [1],
and the main theoretical problem to be addressed in this
sense is the analysis of long-distance physics, i.e., the com-
putation of matrix elements of the effective four-quark op-
erators between hadron states. To deal with this, a simple
and widely used approach is the so-called factorization
approximation (FA) [2]. The extent of the validity of this
approximation is however controversial. In the last years,
new approaches, such as the so-called QCD factorization
(QCDF) [3] and perturbative QCD (PQCD) [4] schemes,
have been proposed with the aim of improving the factor-
ization assumption on QCD grounds [5].

In the framework of FA, an extensive analysis of the
phenomenology of B decays has been presented by Ali,
Kramer and Lü [6], where the authors calculate the
branching fractions for charmless non-leptonic two-body

B decays and propose a number of tests for the approach.
In particular, the authors in [6] take into account the ef-
fects of annihilation amplitudes, which are neglected by
a priori arguments in most works on the subject. In con-
trast to the general custom, it is pointed out that the
contribution of annihilation diagrams could play a signif-
icant and even dominant role, especially in some cases
where the non-annihilation amplitudes are suppressed. It
is worth to notice that the theoretical control of anni-
hilation amplitudes is very important for the analysis of
CP -violating observables, since in many cases the anni-
hilation contribution carries a weak phase different from
that provided by the tree or penguin amplitudes. This is
e.g. the case for the decays B+ → K+π0, π+K0, which
have been largely analyzed in connection with the experi-
mental determination of the weak phase angle γ [7]. More-
over, even if in most cases annihilation amplitudes appear
to be Cabibbo suppressed, their presence can be impor-
tant since they can compete with possible manifestations
of new physics, which could be revealed through the anal-
ysis of CP -violating observables. On the other hand, the
measurement of annihilation contributions is interesting
by itself from the point of view of the understanding of
low energy dynamics and the viability of the theoretical
approaches. For example, annihilation amplitudes are as-
sumed to be suppressed by powers of ΛQCD/mb in the
framework of QCDF, while this is not the case in PQCD.

In this paper, we focus our attention in the annihi-
lation contributions to the process B → φK∗, which is
the first observed [8] charmless B decay into two vector
mesons and has been recently analyzed within both QCDF
[9] and PQCD [10]. While annihilation contributions are
expected to be highly suppressed in the case of B → PP
decays, an equivalent suppression mechanism is not ob-
vious for the B → PV and B → V V processes [6]. For
example, in the case of the decay B+ → K∗+K̄0, it has
been noticed that once the annihilation part of the ampli-
tude is taken into account, the branching ratio could reach
– under reasonable assumptions on the form factors – an
order of magnitude higher than the value obtained from
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the penguin contribution alone [6]. Owing to the large
theoretical uncertainties, however, the role of annihilation
contributions is in general quite difficult to estimate from
the sole measurement of branching ratios. In this sense, B
decays into two vector mesons (which subsequently decay
into two particles each) present an important feature: the
analysis of the angular distributions of the final outgoing
particles allows one to measure both total decay rates and
strong and weak phases of the contributing amplitudes.
This can be exploited e.g. to get different observables for
CP -violating parameters [11–13] and solve the so-called
discrete ambiguities [14], or to analyze the significance of
the contribution of electroweak penguins [15]. We show
here that, in the framework of the standard model, the
analysis of angular distributions in the decay B± → φK∗±
can be used to estimate the annihilation contributions to
the process and to test the viability of the factorization
assumptions. The process B± → φK∗± is particularly in-
teresting, since on the one hand it is expected to be dom-
inated by penguin-like contributions – thus annihilation
amplitudes could be relatively significant – and on the
other hand penguin and annihilation contributions carry
different weak phases; hence they can be disentangled by
looking at CP -odd terms in the angular distribution of
the final states.

Section 2 includes a general description of the angular
distributions and observables in B → V V decays, while
in Sect. 3 we analyze the particular case of B± → φK∗±.
The expected results within the factorization approach are
discussed in Sect. 4, and in Sect. 5 we present some con-
cluding remarks.

2 Observables and angular distributions
in B → V V

Let us consider the decay of a B meson into two vec-
tor mesons, B → V1V2, followed by the decay of both V1
and V2 into two pseudoscalars P1P

′
1 and P2P

′
2 respectively.

Following the notation in [16], the normalized differential
angular distribution can be written as

1
Γ0

d3Γ

d cos θ1 d cos θ2 dψ

=
9

8πK
{
K1 cos2 θ1 cos2 θ2 +

K2

2
sin2 θ1 sin2 θ2 cos2 ψ

+
K3

2
sin2 θ1 sin2 θ2 sin2 ψ +

K4

2
√

2
sin 2θ1 sin 2θ2 cosψ

− K5

2
√

2
sin 2θ1 sin 2θ2 sinψ

− K6

2
sin2 θ1 sin2 θ2 sin 2ψ

}
, (1)

where θ1 (θ2) is the angle between the three-momentum of
P1 (P2) in the V1 (V2) rest frame and the three-momentum
of V1 (V2) in the B rest frame, and ψ is the angle between
the planes defined by the P1P

′
1 and P2P

′
2 three-momenta

in the B rest frame. The coefficients Ki can be written in

terms of three independent amplitudes, A0, A‖ and A⊥,
which correspond to the different polarization states of the
vector mesons V1 and V2 [17]. One has

K1 = |A0|2 , K4 = Re[A‖A∗
0] ,

K2 = |A‖|2 , K5 = Im[A⊥A∗
0] ,

K3 = |A⊥|2 , K6 = Im[A⊥A∗
‖] , (2)

and K ≡ K1 + K2 + K3. Notice that only six from the
nine possible observables given by the squared amplitude
A∗A can be measured independently. This is due to the
fact that both V mesons are assumed to decay into two
spin zero particles.

In the literature, B → V V decays are also frequently
described using the helicity basis. According to their
Lorentz structure, the amplitudes can be parameterized
in general as [11]

Hλ = ε∗
1µ(λ) ε∗

2ν(λ)

×
[
agµν +

b

m1m2
pµpν +

ic
m1m2

εµναβp1αpβ

]
, (3)

where p is the B meson momentum, λ is the helicity of
both vector mesons, and mi, pi and εi stand for their
masses, momenta and polarization vectors respectively. In
this way, for λ = 0,±1 the helicity amplitudes are given
by

H±1 = a± c
√
x2 − 1 , H0 = −ax− b (x2 − 1) , (4)

where x ≡ (m2
B − m2

1 − m2
2)/(2m1m2). The relation be-

tween the amplitudes in both schemes is

A⊥ =
H+1 −H−1√

2
, A‖ =

H+1 +H−1√
2

,

A0 = H0 , (5)

and the coefficients Ki can be written in terms of the
parameters a, b, c as

K1 = |x a+ (x2 − 1) b|2 ,
K2 = 2 |a|2 ,
K3 = 2 (x2 − 1)|c|2 ,
K4 = −

√
2

[
x |a|2 + (x2 − 1) Re(a∗b)

]
,

K5 =
√

2 (x2 − 1)
[
x Im(ac∗) + (x2 − 1) Im(bc∗)

]
,

K6 = 2
√
x2 − 1 Im(ca∗) . (6)

The relative decay rates into V meson states with longi-
tudinal and transverse polarizations are thus given by

ΓL

Γ0
=

|H0|2
|H0|2 + |H+1|2 + |H−1|2 =

K1

K ,

ΓT

Γ0
=

|H+1|2 + |H−1|2
|H0|2 + |H+1|2 + |H−1|2 =

K2 +K3

K . (7)
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In general, the parameters a, b and c are complex num-
bers. If it is assumed that the total decay amplitude arises
as the sum of several interfering contributions (e.g. differ-
ent isospin channels), one has

a =
∑

i

|ai| ei (δa
i +ϕa

i ) , (8)

where δ and ϕ stand for “strong” (CP -conserving) and
“weak” (CP -violating) phases respectively. Within the
standard model, the latter arise from the CKM matrix
coefficients entering the amplitude, while strong phases
receive both contributions from short- and long-distance
physics. Similar relations as that in (8) can be written for
parameters b and c.

In our analysis we will take into account both the de-
cay B+ → φK∗+ and its CP -conjugated process, B− →
φK∗−. Following standard notation, CP -conjugated am-
plitudes are denoted as Āη and H̄λ, with η = 0, ‖,⊥ and
λ = 0,±1. Accordingly, in the differential decay ampli-
tude (1), one should replace Ki → K̄i for i = 1, . . . , 4 and
Ki → −K̄i for i = 5, 6, which corresponds to the replace-
ment a → ā, b → b̄ and c → −c̄ in (3). Since only weak
phases change sign after a CP -conjugation, one has

ā =
∑

i

|ai| ei (δa
i −ϕa

i ) , (9)

while similar relations hold for b̄ and c̄.

3 Penguin and annihilation amplitudes
in B± → φK∗±

Let us now focus on the decay B− → φK∗−. In the stan-
dard model, this process is driven by both penguin and
annihilation contributions, with the salient feature that
they carry different weak phases. Up to small O(λ2) cor-
rections (λ = |Vud| � 0.22), the penguin amplitude is
proportional to the VCKM elements VtbV

∗
ts, while the an-

nihilation contribution carries the factor VubV
∗
us. The rel-

ative phase between both terms, up to O(λ2) corrections,
is

arg
(
VubV

∗
us

VtbV ∗
ts

)
� arg

(
−VudV

∗
ub

VcdV ∗
cb

)
≡ γ , (10)

which is one of the angles of the so-called unitarity trian-
gle. Though the annihilation contribution is doubly
Cabibbo suppressed with respect to the penguin one, this
is compensated by the relation between the correspond-
ing Wilson coefficients. We come back to this in the next
section.

As stated in the Introduction, there is a strong theo-
retical motivation to know the magnitude of annihilation
amplitudes. While the penguin contributions can be (at
least, roughly) estimated with the aid of the factorization
approach, the annihilation contributions in B → V V de-
cays are much more uncertain, since the corresponding
form factors cannot be related to semileptonic decay am-
plitudes. Since there are no tree amplitudes contributing

to B± → φK∗±, this process is a promising one, in the
sense that penguin and annihilation contributions can be
comparable in size [6] and their relative magnitude can be
measured. Moreover, in view of the different weak phase
structure, both contributions can be disentangled by look-
ing at CP -odd observables.

According to the general analysis in Sect. 2, the coef-
ficients a, b and c for the case of B− → φK∗− can be
written as

a = (aP eiδ′
a + aA eiγ) eiδa ,

b = (bP eiδ′
b + bA eiγ) eiδb ,

c = (cP eiδ′
c + cA eiγ) eiδc , (11)

where the subindices P and A correspond to penguin and
annihilation contributions respectively. Without loss of
generality, strong phases accompanying both terms have
been separated into a global phase δi and a relative phase
δ′
i, while aP,A, bP,A and cP,A are real numbers. For the
CP -conjugated decay B+ → φK∗+ the corresponding co-
efficients ā, b̄ and c̄ are similar to those in (11), just chang-
ing γ → −γ.

Now, in principle, from the angular analysis of B± →
φK∗± decays one can measure 12 observables, Ki and K̄i

with i = 1 to 6. Let us first concentrate on the observables
given by the transverse modes of the vector mesons φ and
K∗, that means i = 2, 3 and 6. With the above definitions,
one has

K2 = 2
[
a2
P + a2

A + 2 aP aA cos(δ′
a − γ)

]
, (12)

K3 = 2 (x2 − 1)
[
c2P + c2A + 2 cP cA cos(δ′

c − γ)
]
,

and similar relations hold for K̄2 and K̄3, changing the
sign in front of γ. The relative magnitude of the annihi-
lation contributions can be measured from the combined
observables

K2 − K̄2 = 8 aP aA sin δ′
a sin γ ,

K3 − K̄3 = 8 (x2 − 1) cP cA sin δ′
c sin γ , (13)

which are odd under CP . A significant asymmetry pro-
vided by any of the quantities in (13) would signal the
presence of an important annihilation contribution. This
would be e.g. in agreement with the prediction given by
PQCD, where annihilation amplitudes are found to en-
hance the decay width ΓT by about a factor 2 [10].

Notice that, in order to be different from zero, the
quantities defined in (13) require the presence of non-zero
relative strong phases δ′

a,c. The latter are expected to be
non-vanishing even in the absence of final state interac-
tion effects, since in general the penguin amplitudes in-
clude absorptive contributions [18]. However, it is possi-
ble that these absorptive parts turn out to be suppressed;
hence the asymmetries in (13) could be too small to be
observed experimentally. This happens e.g. in the frame-
work of factorization, where absorptive contributions en-
tering the effective Wilson coefficients appear to be � 20%
of the dispersive parts [6,19]. If this is the case, the signif-
icance of annihilation contributions can still be estimated
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by considering the observables K6 and K̄6, which arise
from the interference between the amplitudes A‖ and A⊥.
In general, the CP -odd observable K6 − K̄6 is given by

K6 − K̄6 = 4
√
x2 − 1 [ aP cA cos(δc − δa − δ′

a)
− aA cP cos(δc − δa + δ′

c)] sin γ , (14)

which is still non-zero in the limit of vanishing strong
phases. Moreover, in that case both K6 and K̄6 provide
separate measurements of CP -violation, obeying

K6 = −K̄6 = 2
√
x2 − 1 [ aP cA − aA cP] sin γ . (15)

The validity of this relation would imply the presence of a
significant annihilation contribution and support the as-
sumption that strong phases are negligibly small.

The remaining observables Ki and K̄i with i = 1, 4
and 5 can also be analyzed, and once again the measure-
ment of any significant asymmetry Ki − K̄i would signal
the presence of annihilation contributions within the SM.
Here we do not enter in a detailed analysis of these observ-
ables since the expressions in terms of Lorentz invariant
parameters a, b and c, as well as the theoretical analysis
of form factors, turn out to be more complicated and do
not provide new physical insights.

4 Factorization

In the framework of factorization, the measurement of the
observables Ki and K̄i in the decay B± → φK∗± can be
used not only to estimate the values of form factors related
with annihilation amplitudes, but also to test the consis-
tency of the approach itself. As before, we concentrate
here in the observables related to the transverse modes of
the φ and K∗, that means to i = 2, 3 and 6.

The penguin amplitudes can be computed within gen-
eralized factorization making use of the effective Hamil-
tonian approach. Once the matrix elements of four-quark
operators are factorized, the amplitudes can be written
in general in terms of the form factors fV , V B→V (q2),
AB→V

i (q2), i = 0, 1, 2, as follows:

〈V (ε, p′)|Vµ|0〉 = fV mV ε
∗
µ ,

〈V (ε, p′)|Vµ|B(p)〉
= − 2

mV +mB
εµναβ ε

∗ ν pαp′β V B→V (q2) ,

〈V (ε, p′)|Aµ|B(p)〉
= i

2mV (ε∗ · q)
q2

qµ A
B→V
0 (q2)

+ i (mV +mB)
[
ε∗

µ − (ε∗ · q)
q2

qµ

]
AB→V

1 (q2) (16)

− i
[
(p+ p′)µ − (m2

B −m2
V )

q2
qµ

]
(ε∗ · q)

mV +mB
AB→V

2 (q2) ,

Here V (ε, p′) stands for the outgoing vector meson φ or
K∗, Vµ and Aµ are the corresponding vector and axial-
vector quark currents, and q = p − p′ is the momentum

transfer. The vector and axial-vector form factors can be
estimated from the analysis of semileptonic B decays, us-
ing the ansatz of pole dominance to account for the mo-
mentum dependences in the region of interest.

In this way the penguin amplitudes aP, bP and cP read

aP = −|C(P)
eff |mφ (mB +mK∗) fφA

B→K∗
1 (m2

φ) ,

bP = |C(P)
eff |mφ

(
2mK∗ mφ

mB +mK∗

)
fφA

B→K∗
2 (m2

φ) ,

cP = |C(P)
eff |mφ

(
2mK∗ mφ

mB +mK∗

)
fφ V

B→K∗
(m2

φ) , (17)

where

C
(P)
eff =

GF√
2
V ∗

ts Vtb

[
a3 + a4 + a5 − 1

2
(a7 + a9 + a10)

]
.

(18)
The coefficients ai can be calculated by means of renor-
malization group analysis [1], taking into account the ex-
perimental values of the running coupling constants in the
SM and the parameters entering the VCKM matrix. They
are complex numbers that include absorptive contribu-
tions from QCD and electromagnetic penguin diagrams.
In general, the theoretical results include some depen-
dence on the renormalization scale (fixed at some value
around the b quark mass), which can be reduced through
the inclusion of QCD corrections to the quark level ma-
trix elements before the factorization procedure [19]. In
the so-called generalized FA, the coefficients are explicitly
written as functions of the number of colors NC , which
is treated as a phenomenological parameter (N eff

C ) to be
adjusted from the analysis of the full pattern of charmless
two-body B decays.

On the other hand, the annihilation contributions can
be analyzed within FA taking into account form factors
fP, V (A)

1 (q2), V (A)
2 (q2) and A(A)(q2) defined by

〈0 |Aµ|B(p)〉 = i fB pµ ,

pµ 〈K∗(ε1, p1)φ(ε2, p2) |Vµ| 0〉
=

[
(ε∗

1 · ε∗
2) p

2 V
(A)
1 (p2) − (ε∗

2 · p1) (ε∗
1 · p2)V

(A)
2 (p2)

]
,

pµ 〈K∗(ε1, p1)φ(ε2, p2) |Aµ| 0〉
= i εµναβ ε

∗µ
1 ε∗ν

2 pα
1 p

β
2 A

(A)(p2) , (19)

where p = p1 + p2 is the B meson four-momentum, p2 =
m2

B . In this case the magnitude of the form factors can-
not be estimated from semileptonic processes, and they
are introduced as unknown parameters. From (19), the
annihilation amplitudes aA, bA and cA are given by

aA = −|C(A)
eff | fB m

2
B V

(A)
1 (m2

B) ,

bA = |C(A)
eff | fB mφmK∗ V

(A)
2 (m2

B) ,

cA = −|C(A)
eff | fB mφmK∗ A(A)(m2

B) , (20)

where
C

(A)
eff =

GF√
2
V ∗

us Vub a1 . (21)
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The annihilation diagram is dominated by a tree contri-
bution, carrying the coefficient a1, which is close to one [6,
19–21]. In contrast, the ai coefficients in C

(P)
eff arise from

QCD and electroweak penguin diagrams, and their or-
der of magnitude lies between 10−2 and 10−4 [6,19,20].
This suppression of penguin amplitudes is however com-
pensated by the ratio between VCKM coefficients in C

(A)
eff

and C(P)
eff , which is of the order of λ2 � 0.05. In addition,

annihilation form factors are further suppressed due to the
large momentum transfer at q2 = m2

B , where they have
to be evaluated. In view of the theoretical uncertainty on
the values of these form factors at q2 = 0, it is not imme-
diate to determine if annihilation contributions are large
enough to interfere with penguin ones. This analysis has
to be done within a definite model for the underlying QCD
dynamics, and can be checked through the measurement
of CP -odd observables proposed here.

Let us come back to the observables Ki and K̄i. In
the spirit of FA, strong phases originated by final state
interactions can be separated from short-distance physics,
therefore they should be common to both penguin and an-
nihilation amplitudes. The only relative strong phase be-
tween them arises then from the absorptive contributions
in the ai coefficients, which can be estimated perturba-
tively. Moreover, this phase is the same for the amplitudes
a, b and c, since the combination of ai coefficients in all
cases is that in C(P)

eff . In this way, within FA we have

δ′
a = δ′

b = δ′
c = arg

[
a3 + a4 + a5 − 1

2
(a7 + a9 + a10)

]

≡ δ′ , (22)

and the CP -even and CP -odd combinations of Ki and K̄i

for i = 2, 3, 6 read

K2 + K̄2 = 4 (a2
P + a2

A + 2 aP aA cos δ′ cos γ) , (23a)
K2 − K̄2 = 8 aP aA sin δ′ sin γ , (23b)
K3 + K̄3 = 4 (x2 − 1)
× (c2P + c2A + 2 cp cA cos δ′ cos γ) , (23c)

K3 − K̄3 = 8 (x2 − 1) cP cA sin δ′ sin γ , (23d)

K6 + K̄6 = 4
√
x2 − 1

×
{

[aP cP + aA cA + (cP aA + aP cA) cos δ′] sin(δc − δa)

+ (aA cP − aP cA) sin δ′ cos(δc − δa)
}

cos γ , (23e)

K6 − K̄6 = 4
√
x2 − 1

[
(aP cA + aA cP) sin δ′ sin(δc − δa)

+ (aA cP − aP cA) cos δ′ cos(δc − δa)
]
sin γ . (23f)

This set of equations deserves some attention. First
of all, as stated in the preceding section, the observables
in (23b), (23d) and (23f) are CP -odd; thus, they vanish
in the limit of vanishing annihilation amplitudes. Notice
that, in the framework of factorization, the annihilation
coefficients aA, cA and the strong FSI phases δa, δc are
the only unknown parameters (the former, due to the un-
certainty in the estimation of form factors), whereas there

is some allowed range for the values of δ′ and γ (the latter
given by experimental measurements of CP -violation inK
physics and the golden plate B → J/ΨKs). In this way,
the six-equation system (23) is overdetermined, and the
experimental information on the observables Ki and K̄i

can be used both to get a measurement of the magnitude
of annihilation contributions and to test the consistency
of the approach. In particular, the expressions in (23a) to
(23d) do not depend on the strong phases δa,c. With the
measurement of these four observables (which corresponds
to the measurement of |A‖| and |A⊥| for B− → φK∗−

and B+ → φK∗+), and getting the estimation of penguin
amplitudes from (17), it would be possible to extract the
values of annihilation coefficients aA and cA as well as the
phases δ′ and γ, and to check the consistency of the val-
ues of these phases with the theoretical and experimental
bounds. Then (23e) and (23f) provide a further check of
the results with the additional possibility of getting in-
formation on the strong phase difference δa − δc. From
the values of the coefficients aA and cA it is immediate
to obtain estimations for the unknown annihilation form
factors V (A)

1 and A(A).
Within factorization one would also expect the strong

FSI phases δa and δc to be relatively small. In this limit
(or in the case in which they are approximately equal)
(23e) and (23f) reduce to

K6 + K̄6 = 4
√
x2 − 1 (aA cP − aP cA) sin δ′ cos γ ,

K6 − K̄6 = 4
√
x2 − 1 (aA cP − aP cA) cos δ′ sin γ , (24)

and the ratio between them is given by

K6 − K̄6

K6 + K̄6
=

tan γ
tan δ′ , (25)

which does not depend on the assumptions on the form
factors. This relation allows a simple test to be made of
the significance of strong FSI phases within FA, provided
that the interference between penguin and annihilation
amplitudes is strong enough to give measurable values for
the observables in (24).

The above equations include two approximations that
are worth to be mentioned. In fact, penguin contribu-
tions should also include the so-called annihilation pen-
guin diagrams, which carry the same weak phase as in
C

(P)
eff . It can be seen that the corresponding combination

of ai coefficients is different from that in (18), even if
the order of magnitude is not significantly modified [20].
Within FA, these amplitudes involve annihilation matrix
elements, therefore their contributions to aP, bP and cP are
proportional to annihilation form factors. Although the in-
clusion of these terms does not introduce more unknown
parameters in (23), the disentanglement of the annihila-
tion form factors becomes more complicated. Here the con-
tribution of annihilation penguins has been neglected for
simplicity. However, they should be incorporated into the
set of equations (23) if the effect of annihilation ampli-
tudes is found to be relatively large. A second approxima-
tion has been made, namely the assumption that penguin
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Table 1. Results for penguin effective coefficients and amplitudes within the generalized
factorization approach

Neff
C (GF/

√
2)−1|C(P)

eff | aP [GeV] bP [GeV] cP [GeV] δ′ BR

2 2.2 × 10−3 −0.9 × 10−8 4.2 × 10−10 0.6 × 10−9 10◦ 2.0 × 10−5

3 1.6 × 10−3 −0.7 × 10−8 3.1 × 10−10 4.3 × 10−10 11◦ 1.1 × 10−5

∞ 3.7 × 10−4 −1.6 × 10−9 0.7 × 10−10 1.0 × 10−10 18◦ 0.6 × 10−6

contributions carry a global weak phase arising from the
VCKM combination V ∗

tsVtb. Here we have neglected the con-
tribution of a virtual u quark in the penguin loop, which
carries a factor V ∗

usVub and could lead to an observable
signal of CP -violation due to the presence of absorptive
strong phases [18]. This contribution is doubly Cabibbo
suppressed with respect to the dominant one, and the final
effect is expected to be below 1% [22]. Thus clear evidence
of the presence of annihilation amplitudes would require
a minimum signal on the level of a few percent.

Let us conclude this section by presenting a brief nu-
merical analysis of the expected results within the frame-
work of generalized FA. Theoretical estimations of effec-
tive coefficients for penguin amplitudes have been per-
formed in previous works [6,19,20], leading to the ap-
proximate values quoted in Table 1 for different choices
of the parameter N eff

C . The values for aP, bP and cP in
Table 1 have been estimated following [6], where the rel-
evant form factors at q2 = 0 are calculated combining
lattice QCD results at a high q2 scale with a light-cone
QCD sum rule analysis. As it can be seen, aP turns out
to be kinematically enhanced with respect to cP. How-
ever, in the expressions for the observables in (23) this
enhancement is compensated by the factors (x2 − 1) and√
x2 − 1, where x � 14 for the process under considera-

tion. In Table 1 we have also included the estimations for
the absorptive phases δ′, as well as the results for the to-
tal branching ratio for B± → φK∗± arising from penguin
contributions alone. In favor of generalized FA, the lat-
ter appear to be in agreement with recent experimental
measurements [8], which quote a decay branching frac-
tion of 10−5 with an error of about 50%. Nevertheless,
the theoretical results in Table 1 should be taken only as
estimative, and even if the experimental error in the mea-
surement of BR(B± → φK∗±) is expected to be reduced
in the future, it is unlikely that from the sole measurement
of the branching ratio one could evaluate the interference
of penguin amplitudes with other possible contributions.

Concerning the theoretical predictions for the absorp-
tive phase δ′, it can be seen that within the approach of
generalized FA its value lies in a range between 10 and
20 degrees. The remaining parameter to be taken into ac-
count in (23) is the CP -violating phase γ, which can be
constrained by considering the present measurements of
VCKM matrix elements and the experimental results for
CP -violating observables in K and B physics. We quote
here the recent estimation in [23],

γ = 63.5◦ ± 7.0◦ . (26)

These ranges for δ′ and γ can be used to constrain the
expected result for the ratio in (25). Notice however that
this expression holds only in the limit in which penguin
annihilation amplitudes are neglected.

Finally, since we have concentrated here in observ-
ables related to B decays into transversely polarized vec-
tor mesons φ and K∗, it is important to notice that the
values in Table 1 lead to a relative decay fraction ΓT/Γ0 �
0.14. Once again this value corresponds to the penguin
contribution alone; therefore it does not depend on the
global factor |C(P)

eff | which carries the dependence on N eff
C .

If this ratio is not significantly reduced after the inclusion
of annihilation amplitudes, the analysis of B± → φK∗±
decays would include enough statistics so as to allow the
measurements to be made of the observables Ki and K̄i

in (23) in the near future.

5 Conclusions

We study the decay B± → φK∗±, showing that the anal-
ysis of angular distributions of the final outgoing particles
can be used to estimate the significance of annihilation
contributions to the decay amplitude. The magnitude of
these contributions represents an interesting subject from
the theoretical point of view, in view e.g. of the different
predictions obtained from QCD-based approaches such as
PQCD or QCDF.

In general, due to the existing hadronic uncertainties
in the estimation of amplitudes, annihilation contributions
are quite difficult to evaluate from the experimental infor-
mation on the total branching ratios. Here we point out
that the decay B± → φK∗± offers an interesting oppor-
tunity in this sense, since annihilation amplitudes may be
relatively large, and they can be disentangled by looking
at certain CP -odd observables. In particular, in the frame-
work of factorization, the experimental information can be
used to measure annihilation form factors and strong final
state interaction phases. The analysis also serves as a test
of the consistency of the factorization approach, taking
into account the theoretical estimation of the coefficients
in the effective ∆B = 1 Hamiltonian and the experimental
information on the angle γ of the unitarity triangle.
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